A Relation of Berezin-toeplitz Operators to Schrr Odinger Operators and the Probabilistic Representation of Berezin-toeplitz Semigroups

نویسنده

  • Bernhard G. Bodmann
چکیده

A class of functions is speciied which give rise to semibounded quadratic forms on weighted Bergman spaces and thus can be interpreted as symbols of self-adjoint Berezin-Toeplitz operators. A similar class admits a probabilistic expression of the sesqui-analytic integral kernel for the associated semigroups. Both results are the consequence of a relation of Berezin-Toeplitz operators to Schrr odinger operators deened via certain quadratic forms. The probabilistic expression is derived in conjunction with the Feynman-Kac-It^ o formula.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of Self-adjoint Berezin-toeplitz Operators on Kähler Manifolds and a Probabilistic Representation of the Associated Semigroups

We investigate a class of operators resulting from a quantization scheme attributed to Berezin. These so-called Berezin-Toeplitz operators are defined on a Hilbert space of square-integrable holomorphic sections in a line bundle over the classical phase space. In this paper we consider self-adjoint Berezin-Toeplitz operators associated with semibounded quadratic forms. Following a concept of Da...

متن کامل

A Transformation Formula Relating Resolvents of Berezin-toeplitz Operators by an Invariance Property of Brownian Motion

Using a stochastic representation provided by Wiener-regularized path integrals for the semigroups generated by certain Berezin-Toeplitz operators, a transformation formula for their resolvents is derived. The key property used in the transformation of the stochastic representation is that, up to a time change, Brownian motion is invariant under harmonic morphisms. This result for Berezin-Toepl...

متن کامل

Compact Operators via the Berezin Transform

In this paper we prove that if S equals a finite sum of finite products of Toeplitz operators on the Bergman space of the unit disk, then S is compact if and only if the Berezin transform of S equals 0 on ∂D. This result is new even when S equals a single Toeplitz operator. Our main result can be used to prove, via a unified approach, several previously known results about compact Toeplitz oper...

متن کامل

Bounded Berezin-toeplitz Operators on the Segal-bargmann Space

We discuss the boundedness of Berezin-Toeplitz operators on a generalized Segal-Bargmann space (Fock space) over the complex n-space. This space is characterized by the image of a global Bargmanntype transform introduced by Sjöstrand. We also obtain the deformation estimates of the composition of Berezin-Toeplitz operators whose symbols and their derivatives up to order three are in the Wiener ...

متن کامل

On the Berezin - Toeplitz

I consider the problem of composing Berezin-Toeplitz operators on the Hilbert space of Gaussian square-integrable entire functions on complex n-space, C n. For several interesting algebras of functions on C n , we have T'T = T ' for all '; in the algebra, where T' is the Berezin-Toeplitz operator associated with ' and ' is a \twisted" associative product on the algebra of functions. On the othe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999